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The Navier-Stokes equations are solved using a second-order accurate numerical 
technique. The supersonic flow ahead of a two-dimensional rectangular body is cal- 
culated as well as the laminar near wake. The fluid is assumed to be viscous and heat 
conducting with coefficients that depend on the temperature. A heuristic derivation of 
the difference equations from the integral form of the conservation laws is presented 
as is a linearized stability analysis. The factors that go into the optimal choice of the 
time, length increment ratio are analyzed. Finally, the use of schemes of this type for the 
solution of problems where there are several different characteristic lengths is discussed. 
Results for the shocked region ahead and the wake region behind the body are presented. 

I. INTRODUCTION 

In this paper, we will examine the complete flow field, both ahead and behind, 
of a two-dimensional rectangular body. 

The initial conditions are such that the flow in front of the body is supersonic 
and the wake region is laminar. The fluid is assumed to be viscous and heat con- 
ducting with coefficients that depend on the temperature. 

There are several recognizable regions in such a flow. Ahead of the body there 
will be a shock wave and near the surface of the body a boundary layer. In the 
neighborhood of the rear corner, the boundary layer will separate and a shear 
layer will develop downstream. Below the shear layer a recirculation region will 
appear and above the shear layer, the flow will expand and then recompress as it 
goes through the trailing shock. A shock may also appear near the rear corner. 

* This work is based upon a dissertation submitted by the first author to the Polytechnic 
Institute of Brooklyn in partial fulfillment of the requirements for the degree of Doctor of Philos- 
ophy (Astronautics). June 1970. 
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Our choice of the numerical scheme was governed by the fact that in many 
problems of interest the existence or nonexistence of a shock is not known a priori. 
The technique we use requires only a specification of the initial and boundary 
conditions and does not require a statement as to whether a shock will appear. 
The appearance or nonappearance of a shock is a consequence of solving the 
complete Navier-Stokes equations in the entire region of interest. 

Methods of the type used in this paper but for inviscid fluid flows containing 
imbedded discontinuities were first introduced by Lax and Wendroff [l]. Because 
the dependent variables in this integration were the basic conservation quantities 
(mass, momentum, and energy) no assumptions pertaining to the thermodynamic 
nature of the gas are required for the application of this method. A two-step version 
of this scheme was given by Richtmeyer [2]. Similar methods have since been 
employed to calculate one-dimensional flows with radiative heat transfer [3], 
finite rate chemistry [4], as well as one-dimensional and quasi-one-dimensional 
viscous flows [5, 61. 

The applicability of this technique to two-dimensional inviscid problems is 
illustrated by the work of Burstein [7] and Bohachevsky and Rubin [8]. The 
method requires no prior knowledge of shock location or shape. The position of 
the shock is obtained as part of the solution. Since the unsteady, inviscid governing 
equations are always hyperbolic the appearance of mixed subsonic-supersonic 
regions does not require any modification of the computational scheme. 

Several authors have presented first order accurate calculations of two-dimen- 
sional viscous flows. Kurzrock [9] has calculated the flow near the leading edge 
of a sharp plate in a hypersonic rarefied stream. He indicates, however, that his 
scheme yields poor results for subsonic flows. Roache [lo] has presented both 
compressible and incompressible solutions of first order accuracy for the flow 
over a rearward facing step. Cheng and Allen [l l] have also considered this problem 
using a scheme which was second-order accurate in space but first-order accurate 
in time. They assumed constant viscosity and heat conductivity coefficients and 
because they were calculating only the wake regions were forced to specify the 
following unknown conditions: (1) the upstream boundary conditions and (2) 
a boundary layer near the wall and a uniform stream in the outer region. They 
attempted to locate the upstream boundary sufficiently far from the corner so as 
to be outside the range of influence of the corner. Further references may be found 
in the AIAA selected reprint series entitled Computational Fluid Dynamics [12]. 

In this paper we present a second-order accurate difference scheme for the cal- 
culation of two-dimensional, viscous, compressible flows. The unsteady Navier- 
Stokes equations are used with the assumptions of a thermally and calorically 
perfect gas. The coefficients of viscosity and heat conductivity are taken to be 
functions of the temperature. A derivation of the scheme and a linear stability 
analysis are presented. The accuracy of the scheme is determined by comparing 
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a numerical calculation to the known analytic solution for a one-dimensional 
shock transition. The scheme is used to compute the flow field over a flat plate 
having finite thickness for a Mach number of 2.0 and a Reynolds number of 10. 
The problem is solved in three separate regions because of the large computer 
storage required. After the flow field on the windward side of the plate is obtained 
the leeward or wake region is calculated. These two regions are then coupled for 
the final calculation. 

II. GOVERNING EQUATIONS 

The equations governing the flow of a viscous, compressible fluid may be written 
in the following way: 
Continuity Equation: 

(+/at> + [@4’)lW = 0; 
Momentum Equation: 

[%J~‘)lW + HP zfus - T’yaxq = 0; 

(1) 

(2) 

Energy Equation: 

(aE/at) + [a(u’E - UTTTS + qyax’] = 0, (3) 

where p is density, uT are the components of velocity in the r-direction, E is the total 
energy per unit volume (kinetic plus internal), P is the stress tensor and qT are 
the components of the heat flux vector. xT are the spatial coordinates and t is the 
time. The above equations are written in what is termed conservation or divergence- 
free form. The motivation for this will be discussed in Section II. 

Expressions for T+“~ and q’ are required before these equations can be solved. 
If one assumes a linear isotropic relationship between the principal components 
of the stress tensor and the rates of deformation then the stress tensor for axes 
other than the principal axes is given by (Rosenhead [13]) 

where p is the coefficient of viscosity, a is the dilitational viscosity, p is the hydro- 
static pressure and W is the Kronecker delta. Stokes hypothesised that the hydro- 
static pressure was equal to the average normal stress, leading to the result 
u = -2~13. This supposition is valid so long as the internal degrees of each con- 
stituent gas species are in thermodynamic equilibrium. 
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In the absence of radiative and convective heat transfer the heat flux vector 
includes conducted heat only. The heat conducted between fluid particles is 
proportional to the negative of the temperature gradient. Thus, 

q’ = -k(%T/W), (5) 

where k is the coefficient of thermal conductivity and T is the temperature. 
The coefficients of viscosity and thermal conductivity are, in general, functions 

of the temperature. Hard sphere molecular theory yields 

p = aTlIz, 

where a is a constant depending on the particular fluid. The thermal conductivity 
is determined from the viscosity coefficient, the Prandtl number Pr and the specific 
heat at constant pressure C, . 

k = pC,/Pr. 
We take Pr to be 0.75. 

To close the system of Eqs. (l)-(5), relationships for pressure and temperature, 
in terms of the other dependent variables are required. The temperature is related 
to the total energy via the specific internal energy e. For a calorically perfect gas 
relationship is T = e/C, where C, is the specific heat at constant volume. Using 
the definition of the total energy, i.e., 

E = p(e + fruvur), 

the temperature can be solved for explicitly in terms of E, p, and @: 

T = (l/pC,)(E - $pu’w). (6) 

The hydrostatic pressure of a thermally perfect gas is related to the density and 
temperature through the equation of state 

P = PRT, (7) 

where R is constant. The system of Eqs. (1) through (7) can now be solved. 
Note that the assumptions of a thermally and calorically perfect gas are in no 

way required by the numerical technique to be presented. For problems in which 
these assumptions are not valid equations other than (6) and (7) could be used. 

III. FINITE DIFFERENCE FORMULATION 

In the preceding section the governing equations and the assumptions made 
were presented. 



470 PALUMBO AND RUBIN 

In two dimensions, Eqs. (l)-(3) have the following form using nondimensional 
variables and the notation x1 = x, x2 = y, zil = 21, z? := L’: 

where E is the reciprocal of the Reynolds number. w is a column vector whose 
components are the dependent variables: 

f and g are given nonlinear functions of w only: 

PV 
PUV 

p + pu2 ’ 
0 + P> 

while F and G are functions of both w and its first spatial derivatives. Using Eqs. (4) 
and (5), F and G are given by the following: 

i 

0 

rg+;, 

G= 

- k 8T .- 
-l)M$ ax- 

y being the ratio of C, to C, , and MO the Mach number based on the reference 
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velocity and speed of sound. Writing Eqs. (6) and (7) in terms of the nondimensional 
variables gives 

T = y(y - 1) M,2K~/~) - W’ + ~~11, 
P = PTIYM,~, 

with k = p = T1J2. 
We now proceed with the development of a finite difference approximation to 

Eq. (8). Integration of this equation from some initial time t to some final time 
t + At yields 

71-l r =- W%?n - w?z*m j:+dt (g + s) dt + E ,I+“’ ($ + T, dt. (9) 

The integrals on the right hand side must now be approximated. The notation 

WLl = ~(.a-~nAx,y+mAy,t+rAt) 

has been introduced for convenience. 
To approximate the integrals in Eq. (9) we may use either 

or 
s b h(z) dz = (b - a) h(a) + O(b - a)” 

a 

s b h(z) dz = &(b - a)[h(a) + h(b)] + O(b - a>“. 
a 

Formula (10a) is known as the rectangular rule and (lob) is called the trapezoidal 
rule. The first integral on the right hand side of Eq. (9) is evaluated using formula 
(lob) while the second integral is evaluated using (lOa). 

After applying (lOa) and (lob) as outlined above we have 

r+1 r - 
w,,, - wn.?n - -iAt [(g)rl+ (E): m + ($);I + ($1 ,I + o(At3) 

+ E At [(g)' 
n,m 

+ ($1 ,] + O(E At2). (11) 

We choose difference approximations to the derivatives in Eq. (11) which are 
O(Ax2) and O(Ay2). 

Replacing the partial derivatives in Eq. (11) with a second-order finite difference 
approximation leads to the following scheme: 

++1 _ 7 
wn,nl - wn,nz - &Mf~+l.m -fL.wJ +fi%.m -fn+-::z.ml + O@t Ax3 

- +%[~(g;,m+, - &n-J + g;%+,,, - di:L,,l + O(At Ay2) 
+ #MF~+l,m - CL,m> + &,4G&z+l - G;,,-1) + O(E At2), (12) 
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where X, = At/Ax, X, = At/Ay, and, for example, 

There are several different ways to evaluate the spatial derivatives maintaining 
stability and second order accuracy. For example, the derivatives at time t -I- At 
can be evaluated over two mesh spacings in the same way as at time t. We have 
chosen to evaluate these derivatives over one mesh spacing in order to limit the 
domain of dependence of the overall scheme to as few points as possible. 

The values of w at t -I- At between mesh points are obtained using a scheme 
which is accurate to O(AP) derived from Eq. (9) by approximating both integrals 
with formula (lOa). Substituting central differences for the spatial derivatives then 
gives 

The initial values off and g between mesh points are found by averaging values 
at surrounding mesh points. For example, 

and similarly for gk,,,, m-1,2 . 
F and G are linear combinations of terms having the form R(w)(~w/&) and 

S(W)(~W/+), where R(w) and S(w) are functions of the viscosity and thermal 
conductivity coefficients and the velocity components. To compute these at the 
grid points we use central differences. Thus , 

( R(w) s,’ = K,,(w;+l,, - dL,,P Ax + Wx2), 7E.m 

( S(w) -g-y = XAw;,,,, - 54&,-d/2 AY + Wy2). 
n,m 
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These difference approximations must be second order accurate to maintain the 
overall accuracy of the scheme. 

To obtain F and G at the half points the derivatives, rather than the functions 
themselves, are averaged. Hence, 

with Ri&2,m = B(K&,, + KS,) and Si,,+,,, = &Si,mil + X,,,). The deriva- 
tives are then replaced by central differences. Averaging the derivatives rather than 
F and G also serves to decrease the domain of dependence of the overall scheme. 

If we now set d t = O(E) the scheme given by Eq. (12) is accurate to O(E~) = O(d t3) 
in time and second order accurate in space (i.e., 0(&x2)). A linear stability analysis, 
to be presented in the next section, reveals that the scheme is stable for values of 
At/Ax and dt/dy which are O(1). Thus we have dx = O(E) and fly = O(C) 
so that the entire scheme has formal accuracy to O(e3). 

The domain of dependence for the computation of a single point is shown in 
Fig. 1. This domain differs from the inviscid domain in that it requires the temper- 

FIG. I. Domain of dependence. 

ature and velocity components at (n + 2, m) and (n, m f 2) for the calculation 
of F and G at (n f 1, m) and (n, m 5 1). Because these additional points are 
required some modification must be made to calculate a point which is a distance 
of one mesh spacing away from a boundary. Hence, instead of using central 
differences to compute derivatives of w on the boundary we use a second order 
accurate forward difference approximation. To illustrate this let (n, m) be a point 
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on a boundary. If we expand w at (n + 1, nz) and (n + 2, WY) in terms of 12’ and 
its derivatives at (n, m) we have 

42+1,m = wm,m + Ax ($)L ~ + ; Ax2 ggr + U(dx3), n,m 

4.t2,m = WLn + 2 Ax (g-)’ + 2 Ax2 (g): m + U(Llx3). 

Solving for (aw/ax)& , we obtain 

aw r 
i-1 ax n.m 

= (4WL,l,, - 3w;,, - 4+2,m Lb + ww. 

Calculation of conditions on the boundaries will be discussed in Section IV. 
The motivation for writing the governing equations in conservation form for 

the calculation of inviscid flows is presented by Richtmeyer [14]. It arises because 
of the possible appearance of discontinuities in the flow. Since discontinuities 
cannot exist when the Navier-Stokes equations are solved, the argument in 
Ref. [14] does not apply. Nevertheless, we use conservation form because in the 
limit of small dissipation we want the governing equations to reduce to the con- 
servation form of the inviscid equations. 

The concept of stability used in this paper was discovered by von Neumann and 
is presented in detail by O’Brien, Hyman, and Kaplan [16]. The von Neumann 
technique consists of examining all exponential solutions to the linearized difference 
equations. Solutions which grow without bound as time increases are said to be 
unstable. 

To apply von Neumann’s analysis the difference scheme, Eq. (12), must be 
linearized first. We rewrite af/lax and ag/ay equivalently as 

(afpx) = A(w)(aw/ax); (14) 

where A and B are the Jacobians off and g with respect to the dependent variables. 
We assume an initially undisturbed flow in which a small disturbance is introduced 
at some point (x + ndx, y + mdy, t + rdt). The vector w is now written as the 
sum of the initial vector w0 (which is constant) and a perturbation vector 6(x, y, t) 
Neglecting terms which are second order or higher in the perturbation variables, 
Eq. (14) reduces to 

aflax = A(w,)(aqax) ; 
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After differencing F and G, Eq. (11) becomes 

Without approximation, F and G may be written as 

F = C,(~w/~x) + C,(&v/%,v), 

G = D,(h/ax) + D,(%w/+), 

where C, , C, , D, and D, are matrix functions of w only. Consistent with the 
previous linearization, we also linearize F and G, neglecting terms which are second 
order or higher in the perturbation variables. Equations (IS) then become 

Replacing the derivatives with central differences yields 

(16) 
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To obtain expressions for w T+l at the half points we execute the same linearization 
procedure on Eqs. (13a) and (13b). Substitution of the resulting equations into 
Eq. (16) yields the following expression: 

where A, and A, are the first central difference operators defined by 

and A2, and A2, are the second central difference operators defined by 

Equation (17) expresses the perturbation variables at a later time in terms of 
their initial values. To determine whether or not the scheme is linearly stable we 
substitute a test solution of the form 

w(x, Y, 0 = fW> evWlx + K2r)l 

into Eq. (17). This leads to the following relationship: 

w(t + At) = Hw(t), (18) 
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where 

H = I + X,A[h,A(cos a - 1) - j&B sin 01 sin p] 

+ h,B[X,B(cos p - 1) - &A sin 01 sin p] 

ih,A[J, sin 01 + J2 sin ~(COS 01 - I)] - ih,B[J, sin fl + J2 sin ~l(cos p - l)] 

- 2 [P,C, sin2 01 + h”,D, sin2 p + J2 sin iy. sin p], 

with 

J1 = 1 + 2 [X2,C,(cos a - I) + h2vD2(~os /3 - l)], 

J2 = &$,(C, + DA 

01 = K1 Ax, p = K2 Ay, and I is the identity matrix. 
The eigenvalues of the amplications matrix H for the present case are determined 

from the solution of a quartic polynomial. To determine the coefficients of this 
polynomial analytically, requires considerable algebra. Since we are basically only 
interested in determining whether or not the scheme is stable, not in an analytic 
representation of the stability criterion, we choose to solve for the eigenvalues of 
H numerically. It is first noted that once values of M,, and Pr are prescribed the 
amplification matrix becomes a function of the four parameters h, , X, , h2,/Re At 
and h2JRe At. With the assumption of equal mesh spacing in the x- and 
y-directions we have X, = h, = X and H is dependent upon h and X2/Re At only. 
It is of interest to examine the second of these parameters in greater detail. 
Subtracting w&2.m. from both sides of Eq. (13a) yields the following: 

r+1 
Wnt1l2.m - 4kf1i2.m = i (wLL - -w*,,,,* + 4*l.m> 

aF acr 
-At[s++ an+5 ( 11 

. 
n*$.m 

While the left side of this equation still represents a time derivative of w at 
(n + 8, m), we see that the right hand side now has an additional term. If we 
rewrite the left hand side as At(aw/at)~,,,,,, and divide through by At it appears 
that the equation which was originally differenced differs from Eq. (8) by the term 
(Ax2/8At) times (aw2/ax2). Thus, it seems that the difference approximation to 
Eq. (8) given by Eq. (13a) has introduced a diffusion term. A similar term arises in 
Eq. (13b) with x replaced by y. Consequently, the quantity (Ax2/8At) is referred 
to as the “numerical viscosity coefficient” in its dimensional form and is the 
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reciprocal of the numerical Reynolds number Rn in its nondimensional form. We 
do not mean to imply that all of the numerical viscosity is associated with this 
term, but since it is artificially introduced through finite differencing we would like 
to make it as small as possible. Returning now to the stability analysis, we see that 

P/Re At = dt/Re(dx2) = Rn/8Re. 

Thus, stability is a direct function of the ratio Rn/Re as well as the ratio At/Ax. 
The eigenvalues of H were computed with Pr = 0.75, iJO = To = p. = 1, V, = 0 
and 0 < M, < 10. The results of this calculation are presented in Figure 4 where 
A,,, vs. M,, is plotted for various values of Re At. For comparison the inviscid 
limit derived in Ref. [2], 

hinv < min[l/(du” + L+ + c)l, 

is also presented. Besides the obvious considerations of stability with maximum 
dt and minimum numerical viscosity, one must also insure that enough points 
can be included to obtain resolution of the physical phenomenon being computed. 
This third consideration, although not as well defined as the ohters, is just as 
important if a realistic solution is to be obtained. 

From Fig. 4 we can see that as Re At is increased, the value of A,, approaches 
the inviscid limit. This is understandable since we can fix dt and let Re + co in 
which case the governing equations reduce to their inviscid form. This indicates 
that choosing dt > O(E) effectively nulifies the effects of physical dissipation. This 
characteristic has also been observed through numerical experimentation. That is, 
choosing At > U(E) leads to poor resolution in regions where physical dissipation 
should dominate. The solution then effectively reproduces the inviscid numerical 
solution. In the case of one-dimensional shock transition, for example, the 
numerical solution of the inviscid equations produces a shock which is smeared 
over two or three mesh spacings. This smearing is not realistic but arises because 
of the numerical viscosity. The numerical solution to the Navier-Stokes equations 
with a value of At > O(E) produces nearly the same result. If a value of At which 
is order E is used, however, the solution obtained is very accurate, as will be 
illustrated in Section V. Hence, even though Rn/Re can be made as small as one 
desires simply by choosing a value of Re At which is large, the resolution is 
generally poor since the resulting time and space increments are too large. 

For small values of Re At we see that A,, decreases and is virtually independent 
of the Mach number. This independence on M0 can be understood as the opposite 
limit, At = O(1) and Re + 0, in which case the inertial terms are negligible when 
compared to the viscous terms. Setting At < O(E) cannot be tolerated, however, 
since the ratio Rn/Re becomes O(1). 



2-D COMPRESSIBLE NAVIER-STOKES EQUATIONS 479 

In principle the scheme is capable of solving two-dimensional flow problems at 
high Reynolds numbers. It will require, however, considerable computer storage 
and computation time. 

IV. INITIAL AND BOUNDARY CONDITIONS 

Solution of external flow problems requires that suitable boundary conditions 
be specified at distances far from the body as well as at the surface of the body. 
The boundary conditions, in addition to Eqs. (l)-(3) are sufficient for the solution 
of all flow problems. 

At the surface of a solid body continuum viscous flow theory requires that both 
the normal and tangential components of momentum vanish. Specification of the 
specific total energy at the surface can be accomplished either by assuming the body 
to be an infinite heat sink or a thermal insulator. The former condition implies 
that the temperature remains constant at its initial value at each point on the 
surface. If the wall is a thermal insulator the heat conduction at the surface must 
be zero. Analytically, this condition is met by setting the temperature gradient 
normal to the wall equal to zero. Numerically, this can be accomplished by 
expanding points along the normal direction in Taylor series based on conditions 
on the wall. We then obtain the following expression for the temperature gradient 
normal to the wall in terms of the wall temperature: 

8T r c-1 an n.m 
= (4C+,,, - 3T,T,, - Ti+2,m)/2 An + Wn2>, 

where (n + 1, m) and (n + 2, m) are points along the outward normal to the surface 
at (n, m) and An is the mesh spacing normal to the wall. Hence, for a thermal 
insulator, 

This relationship is not unique since any order of accuracy could have been 
obtained simply by expanding more points and including more terms in each 
Taylor series. For second order accurate schemes the above expression is the 
appropriate one. 

Specification of the pressure at a solid boundary follows from the governing 
equations. If we consider a wall which is parallel to the y-axis and expand the 
pressure one mesh spacing away from the wall in a Taylor series in terms of the 
pressure and its derivatives at the wall retaining terms of O(dx2) we can solve for 
the wall pressure once the pressure gradient at the wall is known. To obtain 
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@/ax we use the x-component of the momentum equations evaluated at the wail: 

ap a2 _=-- 
ax [ t ax 3 

EP ‘2$-gj - pu’] ++L&;). 

The wall pressure can be solved far from the series expansion. For a wall which 
is parallel to the x-direction we use the same technique utilizing the y-component 
of the momentum equations to obtain ap/ay. When evaluated on a wall parallel to 
the x-direction this equation is 

ap a 2 
-=- ay ay [ - 

au au a & 

3 Ep i 2qF-a.u 1 -pv2 i-E% PT. 1 c 1 
For a corner point we expand the pressure at the point diametrically opposite in a 
Taylor series to O(nx2) and O(dy2) in terms of conditions at the corner. Then 
ap/h and ap/ay are obtained from the momentum equations evaluated at the 
corner point. The evaluation of +/ax and ap/ay from the momentum equation 
at the wall is second-order accurate but not conservative. 

Across a line of symmetry p, pu, and E are reflected symmetrically while pv is 
reflected antisymmetrically as a result of the conditions (ap/ay) = (au/ay) = 
(azqay) = pqap) = 0. 

The problem was solved in three separate calculations for the three regions shown 
in Fig. 2. For the calculation of region I the lines AB and BC were taken sufficiently 

FIG. 2. Three solution regions. 

far away so that no effect of the body was felt, and conditions remained constant 
at the free stream values. Along the line CA4 and the column to the left of it the 
dependent variables were extrapolated at each time step using a parabolic fit of 
the adjacent interior points. Initially, the flow was started impulsively parallel to 
the +x-axis. 

The convergent solution to this region was used as the initial condition in the 
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region FLME for the calculation of region II. The conditions along the line LD 
were extrapolated linearly to free stream conditions a distance of one body width 
to the right of LD. Along FE the boundary conditions were fixed at their initial 
value. The dependent variables along GH and LG and their neighboring column 
and row, respectively, were calculated at each time step using a parabolic fit of 
the adjacent interior points. 

The convergent solutions to regions I and II were used as initial and boundary 
conditions for the final calculation. Region III is calculated to insure that any 
upstream influence of the rearward facing step is accounted for. 

V. TEST CALCULATION: ONE-DIMENSIONAL SHOCK TRANSITION 

In order to test the accuracy of the scheme we compared a numerical solution 
with a known analytic solution to the Navier-Stokes equations. We considered a 
gas having constant coefficients of viscosity and thermal conductivity with a 
Prandtl number of 0.75. In this case the one-dimensional steady Navier-Stokes 
equations can be solved directly. The solution is presented by Zel’dovitch and 
Raiser [17], and is given by 

l-24 1 - ,y 

(u - u2)% = (uy - U2)% exp 
3Re MO2 - 1 

[ i 4 M,2 x2 i I 

where x is referenced to the mean free path and u2 is the velocity behind a normal 
shock wave determined from the Rankine-Hugoniot relationships. In terms of y 
and M,, this velocity is 

u2 = 12 + (y - 1) M12/(Y - 1) w121; 

x = 0 where du/dx is maximum. This occurs when u = u;“. Other flow variables 
are given by p = l/u and 

T = 1 + &(r - 1) Mo2(1 - u”). 

To reduce the two-dimensional scheme to one-dimension we set any differences 
of g or G in Eqs. (12)-(13b) equal to zero. This is equivalent to setting ag/+ and 
aG/+ equal to zero in the governing equations. For an initial condition we impose 
a discontinuity between two mesh points with uniform flow on either side. The 
variables to the right of the discontinuity are determined from those to the left 
using the Rankine-Hugoniot relationships. 

In Fig. 3 we present the numerical solution for u and the exact solution. The high 
accuracy of the scheme is apparent from the diagram. The correct solution was 



482 PALUMBO AND RUBIN 

c; 

a 

a 

a 

a 
-I a 

0 

1 

0 

-0 

0 

1 
c 



2-D COMPRESSIBLE NAVIER-STOKES EQUATIONS 483 

obtained to four significant figures. dx was set equal to 0.25/Re and dt/dx was 
taken to be 95 % of the CFL value. 

It is interesting to note that setting dt = O(E) presents no difficulty with 
solution or boundary conditions for this calculation since the characteristic time 
for shock transition is of this magnitude. 

VI. DISCUSSION OF RESULTS 

A calculation was performed for M, = 2.0, y = 1.4, and Pr = 0.75. The 
Reynolds number based on the plate half-width was 10. The plate temperature was 
held constant at 2.0 and the length to half-width ratio was 7. 

In region I, dx was set equal to dy = 0.075 and X, = X, = 0.15. There were 
160 grid points in the y-direction and 120 points along the x-axis. Since the 
Reynolds number for this calculation was relatively low the shock and boundary 
layer were fully merged. Nevertheless, a region of compression could be distin- 
guished from the remainder of the flow and the downstream locus of this region is 
plotted in Fig. 5 to illustrate the motion of the shock as it approaches the asymptotic 
steady state location. For this purpose the “shock location” is defined as the 
position of maximum density. The computed shock structure is presented in 
Figure 9a (p vs. x for various values of v), and in Fig. 9c (p w. J' for several values 
of x). The Knudsen number, Kn, the ratio of mean free path to characteristic 
flow dimension equals (yn/8)1/2(M,/Re) and is 0.148 for the above conditions. 
This leads to a computed shock thickness of about ten mean free paths at the 
centerline and six mean free paths in the region where the shock exits the grid. 
Figure 9b is a plot of the flow variables along the windward stagnation streamline. 
This figure shows that the temperature and velocity gradients behind the shock 
region are large. Thus, the Rankine-Hugoniot relationships are not satisfied as a 
result of the significant transport effects in this region. Several authors [18-211 
have treated the hypersonic rarefied flow along a stagnation streamline analytically. 
Their results are in qualitative agreement with the results presented here. The 
stagnation pressure along the centerline is of particular interest. For a flow in 
which the shock and boundary later are distinct one expects that the ratio of 
stagnation pressure at the wall (pW) to stagnation pressure immediately behind 
the shock (pJ will be less than one since viscous dissipation induces a decrease 
in stagnation pressure. For problems in which the rarefaction parameter 
(v= Mo/Re1i2) is order one or larger, however, pW is found to be higher than ps 
[22,23]. For this calculation the ratio p,/p, is 1.052. Comparing this value to 
the experimental results of Schmidt and Cresci [24] we find a discrepency of 
approximately 2.1 %. 

Lines of constant Mach number and temperature are plotted in Fig. 6 and 7, 
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respectively. The isobars are plotted in Fig. 8. The structure of the shock has been 
eliminated in these figures. Figure 8 shows that the major pressure change occurs 
at the corner (X = 0, y = l), as expected. The severity of the pressure gradient 
at the corner may be seen from the plot ofp/p, vs. y at x ::= 0 (Fig. 10). The scheme 
generates the large pressure gradient without becoming unstable. This is in marked 
contrast to the inviscid problem (7) which required the inclusion of an artificial 
viscosity term to maintain stability. 

Downstream of the nose, between the plate and the shock, gradients in the 
y-direction become much larger than those in the x-direction and the flow exhibits 
boundary layer characteristics; i.e., +/a~ and v become small. The flow is super- 
sonic throughout the region of the downstream boundary where the shock exits 
the grid. Hence, any upstream propogation of errors which may have been incurred 
through extrapolation in this region is precluded. The validity of extrapolating in the 
subsonic portion of the downstream boundary of region T was tested by eliminating 
the portion of the solution for x > 6.0, and continuing the calculation with 
extrapolation at x = 6.0. This calculation did not effect the flow upstream of 
x = 5.7 while the maximum change in the flow variables in the region 
5.7 < x < 6.0 was less than I %. This is a further indication that the equations 
become parabolic in x as the distance from the nose increases. 
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FIG. 9a. Density c’s. X - Region I. 
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FIG. 10. P/P, vs. Y at X = 0. 

Convergence of the solution was checked by halving the spatial and temporal 
mesh size after time step 675. At time step 700 all flow variables remained constant 
to within four significant figures. 

Region II was computed with dx = dy = 0.075 and X, = h, = 0.05. The 
isotherms are presented in Fig. 12 and the isobars in Fig. 13. The pressure gradient 
at the corner (x = 7, y = 1) is even larger than that at the front of the plate (see 
Fig. 11). Streamlines are plotted in Fig. 14. 

Because the pressure gradient along the base of the plate is adverse the flow 
separates at approximately y = .35, leaving a small slowly moving vortex between 
the plate and centerline. While there are no experimental or numerical results 

FIG. 11. P/PO vs. Y at X = 7.0. 
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FIG. 14. Streamlines - Region II. 

with our particular flow conditions for quantitative comparison we are nevertheless 
in qualitative agreement with results of Refs. [lo, 1 l] that as Re -+ 0 the separation 
point approaches the stagnation streamline. Sufficient resolution and convergence 
in the small region could only be obtained after the mesh spacing and time step 
were reduced to one-eighth of their original size. After separation the streamlines in 
the subsonic portion of the flow continue to converge until sonic conditions are 
met. Past the sonic line these streamlines diverge to allow for the continued accel- 
eration of the flow. The resulting Lava1 nozzle-like configuration near the centerline 
has been observed experimentally [25] and analytically [26]. The supersonic portion 
of the boundary layer expands as it passes over the corner. Figures 13 and 14 show 
a decrease in pressure and divergence of streamlines above the corner. Further 
downstream the flow turns nearly parallel to the free stream and recompresses, 
producing an increase in the pressure and convergence of the streamlines. This 
expansion and recompression are clearly seen in Fig. 17 where p ~3. x is plotted at 
various distances from the centerline. 

The solution to region III reveals the effects of the rearward facing step on the 
flow upstream of it. In Fig. 15 we have plotted u vs y at various x-stations. The 
dotted curve corresponds to the solution obtained in the calculation of region I 
(i.e., the initial conditions for the calculation of region II). The solid curve 
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FIG. 15. FIG. 15. u vs. Y with and without step. u vs. Y with and without step. 

8. 8 
-WITH STEP x=6 2 I 

- ---WITH NOSTEP 

6- 1 6 

Y Y 

4- 4- 

/ I 
/ 

I 2- z- j 

I 
I 

I P/P0 2 P/P0 
2 

8 8 

X=6.6 x =7.0 - 

6- 6- 

Y Y, -1 

4- 4- 

2- 

0.9 

2- 

P/P0 
1.9 0.8 P/P0 

18 

FIG. 16. P/P, vs. Y with and without step. FIG. 16. P/P, vs. Y with and without step. 



492 PALUMBO AND RUBIN 

- 

I I I I I I I 
7 8 9 IO II 12 13 

X 

FIG. 17. Density LX X- Region II. 

represents the solution obtained after regions II and III were computed. The effect 
of the step is to steepen the velocity profile in the subsonic portion of the boundary 
layer. The increase in velocity over the initial values comes about because the 
streamlines, which initially all have positive inclination, begin to turn towards the 
wall and converge as the influence of the corner is felt. A considerable decrease in 
pressure accompanies this increase in velocity with a minimum deviation of the 
velocity from the initial conditions (see Fig. 16). This result demonstrates that even 
though the boundary layer thickness is not appreciably affected by the addition of 
the step the flow near the wall is not a boundary layer in the strict sense since i?p/ay 
is no longer small. The final pressure on the surface of the plate as well as the 
pressure obtained from the calculation of region I are plotted in Fig. 18. The skin 
friction coefficient 

r 
CF = &($q = 2-&1,2”, 

90 0 ay w ay w 
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FIG. 18. P/P, cs. X on plate surface. 
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FE. 19. Skin friction and heat transfer coefficients on plate surface. 
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and heat transfer coefficient 

with H, = 1 + $(y - 1) MO2 are plotted in Fig. 19 along the plate surface. The 
addition of the rearward facing step raises the skin friction because the velocity 
gradient at the wall becomes larger. There is also an increase in the heat transfer 
at the constant temperature wall because of the pressure and resulting temperature 
decrease near the wall. 

Total computer time required for the solution to region I was six hr on the 
CDC 6600. Region II required 8 hr and region III 10 min. 
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